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In the context of f (R, T ) modified gravity theory, we investigate a cosmological model with
homogeneous and anisotropic properties, specifically the Locally Rotationally Symmetric (LRS)
Bianchi type-I model. By considering Einstein's field equations in f (R, T ) gravity, we solve them
with the choice f (R, T ) = R + 2f (T ), where R represents the Ricci scalar and T denotes the trace
of the stress-energy momentum tensor T

ij
. In this case, we set TTf )( , with   being an

arbitrary constant. It is worth noting that the cosmic jerk parameter j is directly proportional to
the negative value of the deceleration parameter q, namely qj  . We analyze the physical and
geometrical properties of the models, and also employ the statefinder diagnostic pair to gain insight
into the geometrical nature of the model. We also investigate the validity of the generalized second
law of thermodynamics (GSLT) on the apparent and event horizons. Our findings reveal that GSLT
holds on both the horizons.

Keywords:  TRf  , : Bianchi type-I: Jerk parameter: generalised second law of

       thermodynamics: deceleration parameter: statefinder parameter

1. Introduction. The discovery of the accelerating expansion of the Universe

has been a significant advancement in modern cosmology [1-8]. This phenomenon

is attributed to dark energy (DE), an exotic form of energy with negative pressure,

which currently constitutes approximately 70% of the total energy content of the

cosmos [9-11]. The cosmological constant  , characterized by the equation of

state (EOS)  p  where p represents the pressure and   is the energy density

of DE with 1 , is considered the most appealing and simplest candidate for

DE. However, the cosmological constant faces challenges such as the fine-tuning

problem and cosmic coincidence problem [12,13]. To address these issues, various

dynamical scalar fields have been proposed as alternatives to DE, including

quintessence [9-11,14-16], k-essence [17,18], phantom [19] and quintom fields

[20,21].

On the other hand, modified gravity theory is the prominent gravity theory

which can explain the present acceleration of the universe without any dark energy.

It may also provide the explanation of dark matter. It may resolve the coincidence

problem simply by the fact of the universe expansion, describe the transition from
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deceleration to acceleration of the universe and also useful for high-energy physics

problems (i.e., unifications of all interactions, hierarchy problem resolution). Even

if the current universe is entering the phantom phase, modified gravity effectively

describes the transition from the non-phantom to phantom era without the need

to introduce exotic matter (phantom) with extremely strange properties [22].

The modified gravity description of our universe cosmological evolution is one

physically appealing theoretical framework, which can potentially explain the

various evolution era's of the universe, for the simple reason that it can provide

a unified and theoretically consistent description. In addition, modified gravity

provides an alternative view of classical particle physics problems, like the

baryogenesis issue. Particularly, it is possible to generate non-zero baryon to

entropy ratio in the universe by using the gravitational baryogenesis mechanism

[23]. Then, in the context of modified gravity it is possible to generalize the

gravitational baryogenesis mechanism, and various proposals towards this issue have

appeared in the literature [24].

The  TRf  ,  gravity theory, proposed by Harko et al. [25], is an intriguing

and promising version of modified gravity. It introduces a gravitational Lagrangian

that is an arbitrary function of the Ricci scalar R and the trace of the stress-

energy tensor T. In their work, Harko et al. derived the gravitational field equations

in the metric formalism and the equation of motion for test particles, which arises

from the covariant divergence of the stress-energy tensor. These  TRf  ,  gravity

models offer an explanation for the cosmic accelerated expansion observed in the

late Universe.

Several researchers have since investigated cosmological models in  TRf  ,

gravity within different Bianchi-type space-times. Specifically, Chaubey and Shukla

[26], Adhav [27], Samanta [28], and Reddy et al. [29-31] have studied such

models. Tiwari et al. [32] found an exact solution for the field equations of

 TRf  ,  gravity in the LRS Bianchi type-I model, assuming a linear relationship

between the deceleration parameter and the Hubble parameter. Sofuog

l u [33]

reconstructed the  TRf  ,  model, allowing for the Gödel Universe. Tiwari et al.

[34] investigated the time dependence of the gravitational and cosmological

constants by considering a Bianchi type-I universe in  TRf  ,  gravity. Tiwari and

Beesham [35] examined the LRS Bianchi type-I space-time with a decaying

cosmological term in this theory. Tiwari et al. [36] studied the Bianchi type-I

space-time with a constant jerk parameter j = 1 in  TRf  ,  gravity. Chaubey and

Shukla [37] explored the exact solutions for anisotropic Bianchi cosmological

models in  TRf  ,  gravity with a time-dependent cosmological constant  t .

Singh and Bishi [38] discussed the presence of a cosmological constant   and

a quadratic EOS in Bianchi type-I Universe within  TRf  ,  gravity. Bharali and
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Das [39] investigated the Bianchi type VI
0
 space-time with modified Renyi

holographic dark energy (MRHDE) in  TRf  ,  gravity. Kumrah et al. [40]

explored a homogeneous and isotropic cosmological model within the framework

of  TRf  ,  gravity, where the gravitational and cosmological constants are gen-

eralized as coupling scalars. Mishra et al. [41] presented a Bianchi type-I metric

with an anisotropic variable parameter in  TRf  ,  gravity. Nagpal et al. [42] have

studied flat FLRW Universe in   TRRTRf  2 , 2  gravity with   being an

arbitrary constant.

In recent years, Bianchi Universes have gained significance in observational

cosmology due to the findings from the WMAP data [43-45]. These data suggest

the need for an extension to the standard cosmological model, incorporating a

positive cosmological constant that exhibits similarities with the Bianchi morphol-

ogy [46-51]. Various studies have explored the implications of varying vacuum

energy density in this context [52-62].

Interestingly, contrary to generic inflationary models [63-69], the WMAP data

suggest that the Universe should possess a slightly anisotropic spatial geometry even

after the inflationary phase. This indicates a non-trivial isotropization history of the

Universe influenced by the presence of an anisotropic energy source. To account

for the observed homogeneity and flatness of the Universe, it is commonly assumed

that the Universe underwent a period of exponential expansion [63,65-67]. The

majority of discussions about the expansion of the Universe take place within the

framework of the homogeneous and isotropic Friedman-Robertson-Walker (FRW)

cosmology. This preference is primarily due to the simplicity of the field equations

and the availability of analytical solutions in most cases. However, there is no

compelling physical reason to assume homogeneity prior to the inflationary period.

Although dropping the homogeneity assumption would result in an intractable

problem, relaxing the assumption of isotropy can lead to anisotropy. Several

authors [70-75] have studied specific cases of anisotropic models and found that

the predictions of the FRW model remain largely unaffected even when significant

anisotropies were present before the inflationary period.

Furthermore, gravitational thermodynamics plays a crucial role in determining

the viability of cosmological models. If two cosmological models satisfy the same

observational constraints but one adheres to thermodynamic laws while the other

does not, the later can be ruled out. Therefore, it is essential for any physical

system to comply with thermodynamic laws. In this regard, extensive research has

been done on the apparent and event horizons within various gravity theories [76-

79]. The Generalized Second Law of Thermodynamics (GSLT) has garnered

significant interest in the context of an accelerating Universe. Wang et al.

demonstrated that thermodynamic laws are satisfied on the apparent horizon but

fail to hold on the event horizon [80].
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In [81], the second law of thermodynamics was discussed in the context of

horizon cosmology. They consider various forms of entropy (i.e., Tsallis entropy,

Renyi entropy, Kaniadakis entropy etc.) on the apparent horizon and determine

the appropriate condition for entropic parameters for validation of the second law

of thermodynamics. They found that the second law of thermodynamics is satisfied

during wide range of cosmic eras of the universe particularly, from inflation to

radiation-dominated eras followed by the reheating stage.

Moreover, in another paper [82], authors have discussed various issues that arise

in the relationship of gravity and thermodynamics, where thermodynamic law is given

by WdVdETdS  . Also, they discussed the different problems that lead to some

inconsistency in the Equation of State (EoS) parameter. They modified the thermo-

dynamic law to dVdETdS   on the apparent horizon to get rid of this issue

and found that the modified thermodynamic law is valid for all values of EoS.

However, Chakraborty later showed that by modifying the horizon temperature,

the GSLT can be satisfied on the event horizon [83]. Consequently, numerous

studies have been undertaken to investigate the validity of the GSLT in the context

of the event horizon [84-88]. Moreover, the validity of the GSLT has been

explored in the framework of anisotropic Bianchi-I Universe models. Sharif and

Saleem demonstrated that the GSLT is satisfied on the apparent horizon in the

Bianchi-I model [89]. Their findings reveal that the GSLT consistently holds on

the apparent horizon. In a separate study, Sharif and Khanum investigated the

validity of the GSLT, considering various parameters such as shear, skewness, and

equation of state in an anisotropic dark energy model [90].

This paper focuses on investigating the LRS Bianchi type-I cosmology within

the framework of the modified  TRf  ,  gravity theory. Specifically, we consider

the choice   )(2 , TfRTRf  , where TTf )( ,   is an arbitrary constant.

By utilizing this specific form, we obtain explicit solutions for the field equations,

which are discussed in detail in Section 4. To provide a comprehensive under-

standing, we first introduce the basic formalism of  TRf  ,  gravity in Section 2.

The field equations are then presented in Section 3. Moving forward, Section 5

is devoted to examining the GSLT (Generalized Second Law of Thermodynamics)

on both the apparent and event horizons. Furthermore, we explore the statefinder

diagnostic, the physical acceptability of the solutions, and engage in graphical

discussions of various parameters in Sections 6, 7, and 8 respectively. Finally, the

paper ends with concluding remarks in Section 9.

2. The basic formalism of f(R, T) gravity. The gravitational action of

 TRf  ,  gravity is given by [25]

  .  ,
16

1 44

4   


 xdgLxdgTRf
Gc

S m (1)
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where  TRf  ,  is an arbitrary function of the ricci scalar R and the trace T of

the energy-momentum tensor T  i. e. ( 
 TgT ), and L

m
 corresponds to the

matter Lagrangian density and g is the determinant of metric tensor g .

Using natural units ( Gc  81 ), a variation of action of Eq. (1) w.r. to

metric tensor gives the following field equations of  TRf  ,  gravity

       

    ,  , ,

 , ,
2

1
 ,









TRfTTRfT

TRfggTRfRTRf

TT

RR 

(2)

where   RTRffR   , ,   TTRffT   , , 
  is the D'Alembert op-

erator,   is the covariant derivative, R  is the Ricci tensor, and T  is the

energy-momentum tensor given by

 
, 

2











g

Lg

g
T m

(3)

and   is

. 










g

T
g (4)

Using Eqs. (3) and (4), we obtain

. 22
2











gg

L
gLgT m

m (5)

By contracting Eq. (2), we get

           .  , ,1 ,2 ,3 ,  TRfTTRfTRfTRfRTRf TTRR (6)

where 
  g . If we assume that the matter Lagrangian density L

m
 depends

on the metric tensor components g  and does not depend on its derivatives,

then Eq. (3) reads

. 2







g

L
LgT m

m (7)

If the matter-energy source of the Universe is a perfect fluid, then the

energymomentum tensor can be defined as

  ,   pguupT (8)

where   and p are the energy density and the pressure of the fluid, respectively,

and u  is the four-velocity vector satisfying 1
uu  and 0 

 uu . Now,

for a perfect fluid distribution one can write the matter Lagrangian density as

L
m

 = -p, which on using, Eq. (5) gives

. 2   Tpg (9)

Then the field equations (2) take the form
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       

  .  ,

 , ,
2

1
 ,









pgTTRfT

TRfggTRfRTRf

T

RR 

(10)

We note that Harko et al. [25] have mentioned the following functional forms

of  TRf  ,  function:

   
   
















. )(

)(

)(2

 ,

321

21

TfRfRf

TfRf

TfR

TRf (11)

In this paper, we focus on the first one of these functional forms i.e.   TRf  ,

)(2 TfR  and choose TTf )( , where   is an arbitrary constant. For this

choice of the function, Eq. (10) becomes

    . 221
2

1
  gpTTRgR (12)

A comparison of Eq. (12) with the following Einstein's field equations

, 
2

1
  gTRgR (13)

yields    �� pTT 2 . Thus, one can write the field equations of  TRf  ,

gravity with varying cosmological constant   as

  . 21
2

1
  gTRgR (14)

3. Line element and field equations. The spatially homogeneous and

anisotropic LRS Bianchi type-I Universe model is described by the line element

 , 2222222 dzdyBdxAdtds  (15)

where A and B are time-dependent metric potentials. For the model defined by

the line element (15), the field equations (14) in  TRf  ,  gravity give the following

system of equations

  , 712
2

2

p
B

B

B

B



(16)

  , 71 p
AB

BA

B

B

A

A



(17)

  , 5312
2

2

p
B

B

AB

BA



(18)

where the dot (.) represent time derivative. Using the expression of the trace of

the energy-momentum tensors pT 3 , yields  p5 .

The spatial volume V, mean scale factor a and the mean Hubble parameter
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H for the Bianchi type-I Universe are given by

, 2ABV  (19)

  , 31312 VABa  (20)

 , 
3

1
zyx HHHH  (21)

where xH , yH  and zH  are directional Hubble parameters in the directions of

x; y and z , respectively, which are defined as

. , 
B

B
HH

A

A
H zyx


 (22)

Eqs. (21) and (22) provide us an important relation:

 . 2
3

1
yx HH

a

a
H 


(23)

The expansion rate   and shear scalar   are obtained as follows

, 3;
a

a
u


 

 (24)

. 
2

1
6

2
2

a

k
 

 (25)

where   is the shear tensor and k is a constant which comes from the

anisotropy of the model. For LRS Bianchi type-I model, the average anisotropy

parameter A
p
 and deceleration parameter q are defined as

. 
3

1 3

1

2











 


i

i
p

H

HH
A (26)

. 
2

2

2 








 





H

HH

a

aa
q






(27)

Thus, field equations (16)-(18), can be written in terms of Hubble and deceleration

parameters as

  . 213 22 H (28)

    . 2112 22  pqH (29)

One can express Eq. (28) in the form of

 
, 1

33

21
1

3 222

2










HHH
(30)

where c   is cosmological constant density parameter and  m

is total density parameter. Here 23Hc   is critical density,   is cosmo-

logical constant density, cm   is density parameter of matter and c 
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with  2  may be considered as a correction term to density parameter of

matter which comes from  TRf  , .

From Eqs. (16) and (17), we have

, 
3
1

a

k

B

B

A

A



(31)

, exp
3
1

2 







  dt

a

k
BkA (32)

where k
1
 and k

2
 are constants of integration.

Using Eqs. (20) and (32), we get the scale factors A and B as

, 
3

2
exp

3
132

2 







  dt

a

k
akA (33)

. 
3

exp
3

131
2 








 

 dt
a

k
akB (34)

4. Solution of the field equations. Eqs. (16)-(18) form a system of three

independent equations involving four unknowns: A, B,   and p. To fully solve

this system, we need to make one physically reasonable assumption. Therefore,

we adopt a kinematical condition where the jerk parameter j is directly proportional

to the negative of the deceleration parameter q i.e. qj  . The jerk parameter

represents the dimensionless third derivative of the average scale factor a w.r. to

cosmic time t. This parameterization offers an alternative approach to describe a

model that closely resembles the CDM  model [91].

In the flat CDM  models, the jerk parameter remains constant, specifically

j = 1 [92]. The jerk parameter, its implications, and further details can be found

in the works of Tiwari et al. [36,93], Poplawski [94] and relevant references

therein. For our study, we assume the proportionality qj  , thus incorporating

the relationship between the jerk and deceleration parameters.

, 0
3

 q
aH

a
(35)

where 3aHaj   and   is a constant of proportionality.

Without loss of generality, we take 1  and solving Eq. (35), we get

  , sinh 321 ktkka  (36)

where k
2
 and k

3
 are constants of integration. For the above mean scale factor,

the solutions of metric potentials are given in Eqs. (33) and (34) are

    , 
3

2
expsinh

2
1

32
32

21 











 tF

k
ktkkkA (37)
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    , 
3

1
expsinh

2
1

32
31

21 











  tF

k
ktkkkB (38)

where

    

       . coshcosh
5

3
cosh

3

2
1

sinh

6
3232

2
32

2

3
32

ktkοktkktk

dtktktF



 


(39)

For this model, the directional Hubble parameters xH , yH  and zH  are obtained

as

, 
sinh3

2
coth

32
1

2



k

k
A

A
Hx


(40)

, 
sinh3

1
coth

32
1

2



k

k
B

B
HH zy


(41)

where 32 ktk  . The anisotropy parameter A
p
 is obtained as

. 
sinhcoth27

2
622

2
4
1 


kk

Ap (42)

Anisotropy, in general, affects the dynamics of the universe. The anisotropy

parameter A
p
 gives a measure of the anisotropy of the model and is given by Eq.

(42), which is large early on as 0t  but decreases rapidly [95]. Hence, our

model reaches to isotropy after some finite time which matches with the recent

observations as the universe is isotropic at large scale [96]. For 1 , the universe

has an accelerated expansion throughout the evolution which reseambles with the

result obtained in [97]. Thus as the universe evolves, the anisotropy damps out,

leading to the currently observable universe [98].

Further, the Hubble parameter H, spatial volume V , expansion scalar  , shear

scalar 2  and deceleration parameter q take the following forms

, coth2  kH (43)

, sinh33
1  kV (44)

, coth33 2  kH (45)

, 
sinh66

1

2
2




k

k
(46)

. tanh2q (47)

Using Eqs. (16)-(18), (36), (40) and (41), energy density   and pressure p

are obtained as
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The EOS parameter  p  can be obtained by dividing Eqs. (48) and (49).

For the present model, we obtain, the density parameter 23H  as

, 
coth3 22

2 




k
(50)

where   is given by Eq. (49). Fig.1 shows graphical representation of these results.

In the following we shall discuss the GSLT on the apparent and event horizon

in Bianchi-I model.

5. Generalized second law of thermodynamics. This section is devoted

to study the generalised second law thermodynamics (GSLT). The GSLT is one

of the most prominent principles to check the viability of a cosmological model.

It states that the rate of change of the total entropy of the system must be non-

negative, i.e. derivative (w.r. to cosmic time) sum of horizon entropy and entropy

of the matter within the horizon is always greater than or equal to zero. To

evaluate the rate of change of the entropy of the matter within the horizon, we

Fig.1. (a) H, A
p
, (b) q,  .
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use Gibb's equation and for the horizon entropy, we use the first law of

thermodynamics. In this study, we shall use Hawking and modified Hawking

temperatures for the homogeneous and anisotropic Bianchi type-I Universe bounded

by apparent and event horizon separately. While the apparent horizon forms a

Bekenstein's system in the accelerating Universe, the event horizon does not

exhibit the usual definitions of entropy and temperature as proposed by Bekenstein

[80]. However, it has been demonstrated that the event horizon can be considered

as a Bekenstein's system in the context of an accelerating Universe through

modifications to the Hawking temperature [83]. Now from the first law of

thermodynamics, we get

  , 4 3 dtpHRdEdST XXXX  (51)

where dE
X
 is the energy crossing through the horizon in time dt (here X = A

denote the apparent and X = E denote event horizon). Also, T
X
 and R

X
 denote

the temperature and radius of the horizon respectively. From the above equation,

we get the rate of change of horizon entropy as

 . 4 3

p
T

HR

dt

dS

X

XX 


 (52)

The Gibb's equation is given by [80,99]

, pdVdEdST mmX  (53)

where VEm   is the energy flow across the horizon containing matter and
334 XRV   is the volume with R

X
 is the horizon (apparent or event) radius. Also,

we assume that the temperature of the matter is the same as the temperature of

the horizon (i.e., T
m

 = T
X
) by the local equilibrium hypothesis as the temperature

difference is very small between matter fluid and the horizon at cosmological scales

[99-102]. So, the rate of change of the matter entropy inside horizon dtdSm

is given by

  . 
4 2












 X

X

X

Xm HR
dt

dR
p

T

R

dt

dS
(54)

Now, adding Eqs. (52) and (54), we get the total rate of change of entropy

dtdSTX  at the horizon as

  . 
4 2

dt

dR
p

T

R

dt

dS

dt

dS

dt

dS X

X

XmXTX 


 (55)

For validity of GSLT, we must have the condition 0dtdSTX . Assuming, a

positive temperature, we see that GSLT will be valid as long as   0 p  and

0dtdRX  (or   0 p  and 0dtdRX ). In what follows, we shall discuss

the validity of GSLT for the homogeneous and anisotropic Bianchi type-I

Universe bounded by apparent and event horizon respectively in the following
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subsections:

5.1. Apparent horizon. For the homogeneous and anisotropic Bianchi

type-I Universe, the radius of the apparent horizon is inverse of the Hubble

parameter and given by

H
RA

1
 (56)

and  the rate of change of the apparent horizon is given by

. 1
1

2
q

Hdt

dH

dt

dRA  (57)

The Hawking temperature associated with the apparent horizon is [103]

. 
22

1







H

R
T

A
A (58)

Now, the rate of change of horizon entropy dtdSA  and matter entropy

dtdSm  are given by Eqs. (52) and (54) as,

  , 
4

3

2

p
Hdt

dSA 


 (59)

  . 
4

3

2












 A

Am HR
dt

dR
p

Hdt

dS
(60)

Fig.2. The rate of change of the total entropy at the apparent horizon dS
TA 

/dt is plotted against
time (t) with k

2
 = 0.2, k

3
 = 0.3 and -0.1 .
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Therefore, the rate of change of total entropy at the apparent horizon from

Eq. (55) is given by

  . 
4

3

2

dt

dR
p

Hdt

dS ATA 


 (61)

Now using Eqs. (28), (29) and (57), the above Eq. (61) becomes

    
 

. 
21

118
3

2222






H

qqH

dt

dSTA
(62)

Eq. (62) represents the rate of change of total entropy on the apparent horizon.

The validity of the GSLT on the apparent horizon requires that 0dtdSTA . Due

to the complexity of the expression, we examine the validity of GSLT through

a graphical approach. Fig.2 illustrates the plot of the rate of change of total entropy

dtdSTA  against cosmic time t. It is evident from the graph that GSLT is

consistently satisfied on the apparent horizon.

5.2. Event horizon. The radius of event horizon R
E
 is given by

 
 

. 







t

E
ta

td
taR (63)

From Eq. (63) we get,

. 1 E
E HR

dt

dR
(64)

In this case, the thermodynamical system bounded by the event horizon may not

be a Bekenstein system [80], so we consider modified Hawking temperature instead

of Hawking temperature. The modified Hawking temperature on the event horizon

is defined as [83]

. 
2

2


 E

E

RH
T (65)

Now, the rate of change of horizon entropy ES  and matter entropy mS
  are

respectively given by the Eqs. (52) and (54) as,

  , 
8 22

p
H

R

dt

dS EE 


 (66)

  . 
8

2

2












 E

EEm HR
dt

dR
p

H

R

dt

dS
(67)

Therefore, the rate of change of total entropy at the event horizon from Eq.

(55) is given by

  . 
118

2

22














EA

ETE

RR
p

H

R

dt

dS
(68)
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From the above Eq. (68) we see that GSLT is satisfied as long as   0 p

under the realistic assumption that the radius of event horizon is greater than the

radius of apparent horizon [83]. Using Eqs. (28), (29) and (64), the above Eq.

(68) becomes

  
 

. 
11

21

116
2

2222
















EA

ETE

RRH

qHR

dt

dS
(69)

In order to ensure the validity of GSLT at the event horizon, it is necessary

to have 0dtdSTE . However, the expression of GSLT at the event horizon is

quite complex. Therefore, we discuss it graphically. We have created a graphical

representation that illustrates the plot of the rate of change of total entropy

dtdSTE  versus cosmic time t, as depicted in Fig.3. Upon observing the figure,

it becomes evident that GSLT is consistently satisfied.

6. Statefinder diagnostic. Sahni et al. [104] introduced a statefinder

diagnostic approach, which utilizes the third derivative of the average scale factor

w.r. to cosmic time t, to define a geometrical statefinder pair {r, s}. This diagnostic

tool serves as a useful test for distinguishing between different dark energy models.

Moreover, the statefinder diagnostic pair also characterizes the CDM  model,

where the cosmological constant   plays the role of dark energy.

The CDM  model is considered the fundamental model in the study of the

Fig.3. The rate of change of the total entropy at the event horizon dS
TE 

/dt is plotted against

time t with k
2
 = 0.2, k

3
 = 0.3 and -0.1 .
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evolution of the accelerating Universe, and it is characterized by the fixed point

{r, s} = {1, 0}.

The state finder diagnostic pair is mathematically defined as follows:

, 
3

1
32 H

H

H

H
r


 (70)

 
. 

213

1






q

r
s (71)

Now, we apply the statefinder diagnostic approach to our model for testing

its behavior in accordance with CDM  model (Fig.4). For our model, the

expression of parameters {r, s} are obtained as follows

, sech1 2r (72)

 
. 

tanh213

sech2

2

2




s (73)

7. Physical acceptability of the solutions. For the stability of corre-

sponding solutions, we should check that our model is physically acceptable.

• Sound speed: It is required that the velocity of sound sv  should be less

than the velocity of light c. The positive value of sv  implies that the model is

stable whereas the negative value implies that the model is unstable.

The sound speed sv  for our model is obtained as

 
 

, 
tm

tl

d

dp
s 


v

Fig.4. (a) p,  . (b) r.
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where
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Fig.5b depicts the plot of sound speed with cosmic time. We observe that

1sv  throughout the evolution of the Universe.

• Energy conditions (EC): The weak energy conditions (WEC) and dominant

energy conditions (DEC) are given by (i) 0 , (ii) 0 p  and (iii) 0 p .

The strong energy conditions (SEC) are given by 03  p  [105-108]. Various

 Fig.5. (a) s. (b) 
s
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authors [109-112] have studied energy conditions in different theories of gravities.

The lefthand side of energy conditions have been graphed in Fig.4a and Fig.5c.

From these figures, we observe that WEC and DEC for the derived model are

satisfied whereas SEC is violated.

8. Graphical discussions. In all the graphs, t denotes cosmic evolution

time, generally measured in Giga years (1 Gyr = 109) years along the x axis. Along

the y axis, all physical quantities like anisotropy parameter A
p
, EOS parameter

 , energy conditions etc. are measured in geometrized units, where the speed

of light c = 1 and the gravitational constant G = 1. The numerical values used in

the graphs are 10. , k
1

 = 0.5, k
2

 = 0.2 and k
3

 = 0.3.

9. Conclusions. In this study, we have investigated the properties of a

spatially homogeneous and anisotropic LRS Bianchi type-I model within the frame-

work of  TRf  ,  gravity. Specifically, we consider the choice   )(2 , TfRTRf  ,

where TTf )(  and   is an arbitrary constant. To fully solve the field equations,

we adopt the condition 03  qaHa , where the jerk parameter j is directly

proportional to the negative of the deceleration parameter q. As the cosmic time

evolves, both the Hubble parameter H and the anisotropy parameter A
p
 decreases

and eventually approaches to zero at the later stage of the Universe. This implies

that the Universe exhibits anisotropy in its early stage and tends towards isotropy

at later times. The deceleration parameter 1q , indicates that the model is

experiencing cosmic acceleration. At the early stage of the Universe, the EOS

parameter 1 , suggests a behavior similar to phantom dark energy. However,

as the Universe evolves, it approaches the phantom-divide line 1 . Verma et

al. [113] have arrived at a conclusion that EOS greater than -1 which is in line

with the recent findings from DESI colloboration. The satefinder parameters

1r , 0s , respectively, as cosmic time progresses, indicating that our model

corresponds to the CDM  model at the later epoch. Further, we check the

validity of this model by examining the GSLT on both the apparent and event

horizons. For this, we consider the Hawking temperature for the apparent horizon

and the modified Hawking temperature for the event horizon. It is crucial for a

viable model to satisfy both observational constraints and thermodynamic prin-

ciples. Our investigation reveals that the GSLT is consistently fulfilled on both

horizons. Therefore, based on thermodynamic considerations, it can be concluded

that the given cosmological model is viable.

Throughout the evolution of the Universe, the sound speed sv  remains

positive, indicating the stability of our model. For our model, WEC is satisfied

whereas DEC and SEC are violated. Thus, the derived solutions represent

accelerating Universe models that are consistent with the current observations of

SNe Ia and CMB.
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ÊÎÑÌÎËÎÃÈ×ÅÑÊÀß ÌÎÄÅËÜ ÑÎ ÂÒÎÐÛÌ
ÇÀÊÎÍÎÌ ÒÅÐÌÎÄÈÍÀÌÈÊÈ Â ÃÐÀÂÈÒÀÖÈÈ f(R, T)

Ð.Ê.ÒÈÂÀÐÈ1, Ä.ÁÕÀÐÀËÈ2, Á.×ÅÒÐÈ3, À.ÁÈØÀÌ4

 Â ðàìêàõ ìîäèôèöèðîâàííîé òåîðèè ãðàâèòàöèè  TRf  ,  èññëåäîâàíà

êîñìîëîãè÷åñêàÿ ìîäåëü ñ îäíîðîäíûìè è àíèçîòðîïíûìè ñâîéñòâàìè, â ÷àñòíîñòè,

ëîêàëüíî âðàùàòåëüíî-ñèììåòðè÷íàÿ (LRS) ìîäåëü Áüÿíêè òèïà I. Ïðåäñòàâëåíû

ðåøåíèÿ óðàâíåíèÿ ïîëÿ Ýéíøòåéíà â ãðàâèòàöèè   TRf  ,  )(2 TfR , ãäå

R ñêàëÿð Ðè÷÷è, à T - ñëåä òåíçîðà ýíåðãèè èìïóëüñà T
ij
. Â ýòîì ñëó÷àå

ïðèíÿòî TTf )( , ãäå   ïðîèçâîëüíàÿ êîíñòàíòà. Íàäî îòìåòèòü, ÷òî

ïàðàìåòð êîñìè÷åñêîãî òîë÷êà j ïðÿìî ïðîïîðöèîíàëåí îòðèöàòåëüíîìó

çíà÷åíèþ ïàðàìåòðà çàìåäëåíèÿ q, à èìåííî qj  . Àíàëèçèðîâàíû ôèçè-

÷åñêèå è ãåîìåòðè÷åñêèå ñâîéñòâà ìîäåëåé, èñïîëüçîâàíû äèàãíîñòè÷åñêèå

äèàãðàììû, ÷òîáû ïîëó÷èòü ïðåäñòàâëåíèå î ãåîìåòðè÷åñêîé ïðèðîäå ìîäåëè.

Ðàññìîòðåí âîïðîñ ïðèìåíèìîñòè îáîáùåííîãî âòîðîãî çàêîíà òåðìîäèíàìèêè

(GSLT) íà âèäèìîì ãîðèçîíòå è ãîðèçîíòå ñîáûòèé. Ïîëó÷åííûå ðåçóëüòàòû

ïîêàçûâàþò, ÷òî GSLT âûïîëíÿåòñÿ íà îáîèõ ãîðèçîíòàõ.

Êëþ÷åâûå ñëîâà:  TRf  , : òèï Áüÿíêè-I: ïàðàìåòð ðûâêà: îáîáùåííûé âòîðîé

    çàêîí òåðìîäèíàìèêè: ïàðàìåòð çàìåäëåíèÿ: ïàðàìåòð

     îïðåäåëåíèÿ ñîñòîÿíèÿ
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