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In the context of f(R, T) modified gravity theory, we investigate a cosmological model with
homogeneous and anisotropic properties, specifically the Locally Rotationally Symmetric (LRS)
Bianchi type-I model. By considering Einstein's field equations in f(R, T') gravity, we solve them
with the choice f(R, T)= R+ 2f(T), where R represents the Ricci scalar and 7T denotes the trace
of the stress-energy momentum tensor 7. In this case, we set f(7)=-AT, with A being an
arbitrary constant. It is worth noting that the cosmic jerk parameter j is directly proportional to
the negative value of the deceleration parameter g, namely joc —g . We analyze the physical and
geometrical properties of the models, and also employ the statefinder diagnostic pair to gain insight
into the geometrical nature of the model. We also investigate the validity of the generalized second
law of thermodynamics (GSLT) on the apparent and event horizons. Our findings reveal that GSLT
holds on both the horizons.
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1. Introduction. The discovery of the accelerating expansion of the Universe
has been a significant advancement in modern cosmology [1-8]. This phenomenon
is attributed to dark energy (DE), an exotic form of energy with negative pressure,
which currently constitutes approximately 70% of the total energy content of the
cosmos [9-11]. The cosmological constant A, characterized by the equation of
state (EOS) o = p/p where p represents the pressure and p is the energy density
of DE with m=-1, is considered the most appealing and simplest candidate for
DE. However, the cosmological constant faces challenges such as the fine-tuning
problem and cosmic coincidence problem [12,13]. To address these issues, various
dynamical scalar fields have been proposed as alternatives to DE, including
quintessence [9-11,14-16], k-essence [17,18], phantom [19] and quintom fields
[20,21].

On the other hand, modified gravity theory is the prominent gravity theory
which can explain the present acceleration of the universe without any dark energy.
It may also provide the explanation of dark matter. It may resolve the coincidence
problem simply by the fact of the universe expansion, describe the transition from
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deceleration to acceleration of the universe and also useful for high-energy physics
problems (i.e., unifications of all interactions, hierarchy problem resolution). Even
if the current universe is entering the phantom phase, modified gravity effectively
describes the transition from the non-phantom to phantom era without the need
to introduce exotic matter (phantom) with extremely strange properties [22].

The modified gravity description of our universe cosmological evolution is one
physically appealing theoretical framework, which can potentially explain the
various evolution era's of the universe, for the simple reason that it can provide
a unified and theoretically consistent description. In addition, modified gravity
provides an alternative view of classical particle physics problems, like the
baryogenesis issue. Particularly, it is possible to generate non-zero baryon to
entropy ratio in the universe by using the gravitational baryogenesis mechanism
[23]. Then, in the context of modified gravity it is possible to generalize the
gravitational baryogenesis mechanism, and various proposals towards this issue have
appeared in the literature [24].

The f (R,T) gravity theory, proposed by Harko et al. [25], is an intriguing
and promising version of modified gravity. It introduces a gravitational Lagrangian
that is an arbitrary function of the Ricci scalar R and the trace of the stress-
energy tensor 7. In their work, Harko et al. derived the gravitational field equations
in the metric formalism and the equation of motion for test particles, which arises
from the covariant divergence of the stress-energy tensor. These f (R,T) gravity
models offer an explanation for the cosmic accelerated expansion observed in the
late Universe.

Several researchers have since investigated cosmological models in f(R,T)
gravity within different Bianchi-type space-times. Specifically, Chaubey and Shukla
[26], Adhav [27], Samanta [28], and Reddy et al. [29-31] have studied such
models. Tiwari et al. [32] found an exact solution for the field equations of
f (R,T) gravity in the LRS Bianchi type-I model, assuming a linear relationship

between the deceleration parameter and the Hubble parameter. Sofuoglu [33]

reconstructed the f(R,T) model, allowing for the Gédel Universe. Tiwari et al.
[34] investigated the time dependence of the gravitational and cosmological
constants by considering a Bianchi type-I universe in f (R, T) gravity. Tiwari and
Beesham [35] examined the LRS Bianchi type-I space-time with a decaying
cosmological term in this theory. Tiwari et al. [36] studied the Bianchi type-I
space-time with a constant jerk parameter j=1 in f (R, T) gravity. Chaubey and
Shukla [37] explored the exact solutions for anisotropic Bianchi cosmological
models in f (R,T) gravity with a time-dependent cosmological constant A(t).
Singh and Bishi [38] discussed the presence of a cosmological constant A and
a quadratic EOS in Bianchi type-I Universe within f (R,T) gravity. Bharali and
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Das [39] investigated the Bianchi type VI space-time with modified Renyi
holographic dark energy (MRHDE) in f (R, T ) gravity. Kumrah et al. [40]
explored a homogeneous and isotropic cosmological model within the framework
of f (R,T) gravity, where the gravitational and cosmological constants are gen-
eralized as coupling scalars. Mishra et al. [41] presented a Bianchi type-I metric
with an anisotropic variable parameter in f (R, T) gravity. Nagpal et al. [42] have
studied flat FLRW Universe in f (R, T):R+ . R*+ 20T gravity with o being an
arbitrary constant.

In recent years, Bianchi Universes have gained significance in observational
cosmology due to the findings from the WMAP data [43-45]. These data suggest
the need for an extension to the standard cosmological model, incorporating a
positive cosmological constant that exhibits similarities with the Bianchi morphol-
ogy [46-51]. Various studies have explored the implications of varying vacuum
energy density in this context [52-62].

Interestingly, contrary to generic inflationary models [63-69], the WMAP data
suggest that the Universe should possess a slightly anisotropic spatial geometry even
after the inflationary phase. This indicates a non-trivial isotropization history of the
Universe influenced by the presence of an anisotropic energy source. To account
for the observed homogeneity and flatness of the Universe, it is commonly assumed
that the Universe underwent a period of exponential expansion [63,65-67]. The
majority of discussions about the expansion of the Universe take place within the
framework of the homogeneous and isotropic Friedman-Robertson-Walker (FRW)
cosmology. This preference is primarily due to the simplicity of the field equations
and the availability of analytical solutions in most cases. However, there is no
compelling physical reason to assume homogeneity prior to the inflationary period.
Although dropping the homogeneity assumption would result in an intractable
problem, relaxing the assumption of isotropy can lead to anisotropy. Several
authors [70-75] have studied specific cases of anisotropic models and found that
the predictions of the FRW model remain largely unaffected even when significant
anisotropies were present before the inflationary period.

Furthermore, gravitational thermodynamics plays a crucial role in determining
the viability of cosmological models. If two cosmological models satisfy the same
observational constraints but one adheres to thermodynamic laws while the other
does not, the later can be ruled out. Therefore, it is essential for any physical
system to comply with thermodynamic laws. In this regard, extensive research has
been done on the apparent and event horizons within various gravity theories [76-
79]. The Generalized Second Law of Thermodynamics (GSLT) has garnered
significant interest in the context of an accelerating Universe. Wang et al.
demonstrated that thermodynamic laws are satisfied on the apparent horizon but
fail to hold on the event horizon [80].
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In [81], the second law of thermodynamics was discussed in the context of
horizon cosmology. They consider various forms of entropy (i.e., Tsallis entropy,
Renyi entropy, Kaniadakis entropy etc.) on the apparent horizon and determine
the appropriate condition for entropic parameters for validation of the second law
of thermodynamics. They found that the second law of thermodynamics is satisfied
during wide range of cosmic eras of the universe particularly, from inflation to
radiation-dominated eras followed by the reheating stage.

Moreover, in another paper [82], authors have discussed various issues that arise
in the relationship of gravity and thermodynamics, where thermodynamic law is given
by TdS =—-dE+WdV . Also, they discussed the different problems that lead to some
inconsistency in the Equation of State (EoS) parameter. They modified the thermo-
dynamic law to 7dS =—-dE+pdV on the apparent horizon to get rid of this issue
and found that the modified thermodynamic law is valid for all values of EoS.

However, Chakraborty later showed that by modifying the horizon temperature,
the GSLT can be satisfied on the event horizon [83]. Consequently, numerous
studies have been undertaken to investigate the validity of the GSLT in the context
of the event horizon [84-88]. Moreover, the validity of the GSLT has been
explored in the framework of anisotropic Bianchi-I Universe models. Sharif and
Saleem demonstrated that the GSLT is satisfied on the apparent horizon in the
Bianchi-I model [89]. Their findings reveal that the GSLT consistently holds on
the apparent horizon. In a separate study, Sharif and Khanum investigated the
validity of the GSLT, considering various parameters such as shear, skewness, and
equation of state in an anisotropic dark energy model [90].

This paper focuses on investigating the LRS Bianchi type-I cosmology within
the framework of the modified f (R,T) gravity theory. Specifically, we consider
the choice f (R,T):R+ 2 f(T), where f(T)=-AT, A is an arbitrary constant.
By utilizing this specific form, we obtain explicit solutions for the field equations,
which are discussed in detail in Section 4. To provide a comprehensive under-
standing, we first introduce the basic formalism of f (R,T) gravity in Section 2.
The field equations are then presented in Section 3. Moving forward, Section 5
is devoted to examining the GSLT (Generalized Second Law of Thermodynamics)
on both the apparent and event horizons. Furthermore, we explore the statefinder
diagnostic, the physical acceptability of the solutions, and engage in graphical
discussions of various parameters in Sections 6, 7, and 8 respectively. Finally, the
paper ends with concluding remarks in Section 9.

2. The basic formalism of f(R, T) gravity. The gravitational action of
f(R,T) gravity is given by [25]

S = ;J.f(R,T),/—gd4x+.[Lm\/§d4x. 1)

le6nGe?
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where f(R,T) is an arbitrary function of the ricci scalar R and the trace T of
the energy-momentum tensor T, i e (T = g”VTw), and L corresponds to the
matter Lagrangian density and g is the determinant of metric tensor S -

Using natural units (¢=1=8rxG), a variation of action of Eq. (1) w.r. to
metric tensor gives the following field equations of f (R,T) gravity

fR(R’ T)Ruv_%f(R’T)gpv_<gpv D_vuvv)fR(R’ T):

_Tpv_fT(R’T)Tpv_fT(R’T)®},w >
where f, =0f(R,T)/0R, f;=0f(R,T)/oT, O=V"V,_ is the D'Alembert op-
erator, V, is the covariant derivative, R, is the Ricci tensor, and 7,, is the
energy-momentum tensor given by

2 8¢,
Tuv:\/% (gv ) %)

2

and O, is

° 28, @
dgt

0,=¢

Using Egs. (3) and (4), we obtain

L
- _ _ 9 o9B m
0, =-2T7,+g.L,—28 2" 0g® (5)

By contracting Eq. (2), we get
SeRT)R+3 [ (R,T)-2f(R,T)={-1- /(R T T~ f;(R, T)O. (6)

where ©=g" 0,,. If we assume that the matter Lagrangian density L, depends
on the metric tensor components g,, and does not depend on its derivatives,
then Eq. (3) reads

oL,

Tv :gvam_zaguv : (7)

W

If the matter-energy source of the Universe is a perfect fluid, then the
energymomentum tensor can be defined as

Ty =P+ p)uu,+ pg,, ®)
where p and p are the energy density and the pressure of the fluid, respectively,
and u" is the four-velocity vector satisfying u"u, =-1 and u"V, u,=0. Now,
for a perfect fluid distribution one can write the matter Lagrangian density as
L, = -p, which on using, Eq. (5) gives

®pvz_pgpv_2Tpv' (9)
Then the field equations (2) take the form
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fR(R’ T)Ruv_%f(R’T)gpv_(vuvv — 8w D)fR(R’ T):

_Tuv+fT(R’ T)(Tuv—'_pguv)'
We note that Harko et al. [25] have mentioned the following functional forms
of f(R,T) function:

(10)

R+2 1 (T)
FR.T)=1/(R)+ fo(T) (1
H(R)+ £,(R) /(D).
In this paper, we focus on the first one of these functional forms i.e. f (R,T):

=R+2 f(T) and choose f(T)=-AT, where A is an arbitrary constant. For this
choice of the function, Eq. (10) becomes

1
RHV_ERguv :_(1+27\’)Tuv+)‘(_T_2p)g}W' (12)

A comparison of Eq. (12) with the following Einstein's field equations

1
RHV_ERgHV:_Tpv-"Agpv’ (13)
yields A=A(T )=-M(T+2p ). Thus, one can write the field equations of f(R,T)
gravity with varying cosmological constant A as
1
R”V_ERg”V =—(1+20)T + Ag,, . (14)

3. Line element and field equations. The spatially homogeneous and
anisotropic LRS Bianchi type-I Universe model is described by the line element

ds® =—di*+ Adx*+ B dy?+ d2?), (15)
where A and B are time-dependent metric potentials. For the model defined by

the line element (15), the field equations (14) in f(R,T) gravity give the following
system of equations

B B
2—+—=Ap—-(1+7A)p, 16
5T (1+71)p (16)
A B AB
—+—+—=Ap—(1+7%)p,
AT p—(1+71)p (17)
AB B?
2—+—=[1+31)p-5rp,
A (1+30)p -5 p (18)

where the dot (.) represent time derivative. Using the expression of the trace of
the energy-momentum tensors 7=—p+3p, yields A=i(p-5 p).
The spatial volume V, mean scale factor ¢ and the mean Hubble parameter
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H for the Bianchi type-1 Universe are given by

V =AB*, (19)
a=(aB?)’ =p¥ (20)
H=§(HX+Hy+HZ), Q1)

where H,, H, and H_ are directional Hubble parameters in the directions of
x;, y and z, respectively, which are defined as

A B
H=—, H =H, =—. 22
R A Yy B ( )
Egs. (21) and (22) provide us an important relation:
a 1
H=—=—\H +2H ).
=2 (23)
The expansion rate 0 and shear scalar o are obtained as follows
a
0=uj =3—, (24)
1 . K
c’ =500 =~ (25)

where o, is the shear tensor and k is a constant which comes from the
anisotropy of the model. For LRS Bianchi type-I model, the average anisotropy

parameter Ap and deceleration parameter g are defined as

V&(H-HY
AﬁgZ[’Tj : (26)

i=1

q_—ac'i _ H-H?
a? H?> ) (27)

Thus, field equations (16)-(18), can be written in terms of Hubble and deceleration
parameters as

3H? =(1+20)p+c” +A. (28)
H*(2g-1)=(1+2))p+c* - A. (29)
One can express Eq. (28) in the form of
o’ (1+20)p A
=1- - =1-0-Q, ,
3H? 3H>  3H? A (30)

where Q, =p, /p. is cosmological constant density parameter and Q=0Q,, +Q,
is total density parameter. Here p.=3H % is critical density, pp =A is cosmo-
logical constant density, Q,, =p/p, is density parameter of matter and Q, =p, /p,
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with p, =2Ap may be considered as a correction term to density parameter of
matter which comes from f(R,T).
From Egs. (16) and (17), we have

A B Kk

VRS Gb
_ ky
A= Bk, exp Ia3 dt |, (32)

where k and k, are constants of integration.
Using Egs. (20) and (32), we get the scale factors A and B as

A:ak22/3 epr%drj, (33)

B=ak2_'/3 exp(—j%dt]. (34)

4. Solution of the field equations. Egs. (16)-(18) form a system of three
independent equations involving four unknowns: A, B, p and p. To fully solve
this system, we need to make one physically reasonable assumption. Therefore,
we adopt a kinematical condition where the jerk parameter j is directly proportional
to the negative of the deceleration parameter g i.e. joc—q. The jerk parameter
represents the dimensionless third derivative of the average scale factor a w.r. to
cosmic time ¢. This parameterization offers an alternative approach to describe a
model that closely resembles the ACDM model [91].

In the flat ACDM models, the jerk parameter remains constant, specifically
j=1[92]. The jerk parameter, its implications, and further details can be found
in the works of Tiwari et al. [36,93], Poplawski [94] and relevant references
therein. For our study, we assume the proportionality joc—g , thus incorporating
the relationship between the jerk and deceleration parameters.

a

H3+Bq=0, (35)

where j :'c'z'/ aH?® and B is a constant of proportionality.
Without loss of generality, we take p=1 and solving Eq. (35), we get

a = ky sinh(kyt+ k5 ), (36)
where k, and k, are constants of integration. For the above mean scale factor,
the solutions of metric potentials are given in Egs. (33) and (34) are

P 2
A = k3" sinh(kyt+ kﬁexp(WF(I)], (37)

1
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T 1
B =kk; " sinh(k,t+ kﬂexp(—WF(t)] ) (38)

1
where

F(e)= [[sinh(kyt+ &, )1 at

=1+ %cosh2 (kyt+ k) + %cosh2 (kyt+ k) + o[cosh(k2t+ ks )]6 . (39)

For this model, the directional Hubble parameters H,, H y and H_ are obtained
as

A 2
H =—=k,cotht+ ————,
4 7 3kZ sinht (40)
B 1
H =H_ =—=k,cotht———,
yooiop 3k% sinh’t (41)
where 1= k,t+k;. The anisotropy parameter Ap is obtained as
B 2
?~ 27k coth’tsinh®t (42)

Anisotropy, in general, affects the dynamics of the universe. The anisotropy
parameter Ap gives a measure of the anisotropy of the model and is given by Eq.
(42), which is large early on as r— 0 but decreases rapidly [95]. Hence, our
model reaches to isotropy after some finite time which matches with the recent
observations as the universe is isotropic at large scale [96]. For g =1, the universe
has an accelerated expansion throughout the evolution which reseambles with the
result obtained in [97]. Thus as the universe evolves, the anisotropy damps out,
leading to the currently observable universe [98].

Further, the Hubble parameter H, spatial volume V', expansion scalar 0, shear
scalar o® and deceleration parameter ¢ take the following forms

H =k, cothrt, (43)

V = ki sinh’t, (44)

0 =3H =3k, cotht, (45)
62 = —k2

k? sinh°t ' (“46)

g =—tanh’t. (47)

Using Egs. (16)-(18), (36), (40) and (41), energy density p and pressure p
are obtained as
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p= [L] {3 kzz[”L i 1)00'[1‘12‘5 — 2k, csch’t+ (2 _kzz ky Jcothr csch’t

—161> =101 -1 3h+1 1
1 [47L+1) (48)
+ .
3k sinh®t {31 +1
2

p= 3k2200th21— 41. — 1? + 5k 3k§(Mjcothzr

3ksinh°t | 16A° + 101 +1 3h+1

- (49)
—2kzcschzr+ 2 zkz cothtesch’t + 41 3 £4K+lj[ ! j

ki 3k, sinh®t\ 3L +1 )|\ 1+ 3%

The EOS parameter o = p/p can be obtained by dividing Egs. (48) and (49).
For the present model, we obtain, the density parameter Q:p/ 3H? as

p

- 3k; coth’t ’ (50)
where p is given by Eq. (49). Fig.1 shows graphical representation of these results.
In the following we shall discuss the GSLT on the apparent and event horizon
in Bianchi-I model.

5. Generalized second law of thermodynamics. This section is devoted
to study the generalised second law thermodynamics (GSLT). The GSLT is one
of the most prominent principles to check the viability of a cosmological model.
It states that the rate of change of the total entropy of the system must be non-
negative, i.e. derivative (w.r. to cosmic time) sum of horizon entropy and entropy
of the matter within the horizon is always greater than or equal to zero. To
evaluate the rate of change of the entropy of the matter within the horizon, we
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use Gibb's equation and for the horizon entropy, we use the first law of
thermodynamics. In this study, we shall use Hawking and modified Hawking
temperatures for the homogeneous and anisotropic Bianchi type-I Universe bounded
by apparent and event horizon separately. While the apparent horizon forms a
Bekenstein's system in the accelerating Universe, the event horizon does not
exhibit the usual definitions of entropy and temperature as proposed by Bekenstein
[80]. However, it has been demonstrated that the event horizon can be considered
as a Bekenstein's system in the context of an accelerating Universe through
modifications to the Hawking temperature [83]. Now from the first law of
thermodynamics, we get

TydSy =—dE, =4nRyH(p+ p)dt (51)

where dE, is the energy crossing through the horizon in time dt (here X=A4
denote the apparent and X= E denote event horizon). Also, T, and R, denote
the temperature and radius of the horizon respectively. From the above equation,
we get the rate of change of horizon entropy as

dS, 4nRyH
_— + .
= N (p+p) (52)
The Gibb's equation is given by [80,99]
TydS, =dE,+ pdV , (53)

where E, =pV is the energy flow across the horizon containing matter and
V= 4/ 3n R} is the volume with R, is the horizon (apparent or event) radius. Also,
we assume that the temperature of the matter is the same as the temperature of
the horizon (i.e., T, = T,) by the local equilibrium hypothesis as the temperature
difference is very small between matter fluid and the horizon at cosmological scales
[99-102]. So, the rate of change of the matter entropy inside horizon dS,,/dt
is given by

ds, AnR; dR,
= +p)| —=——-HRy |.
S (o p)( " X] (54)

Now, adding Eqgs. (52) and (54), we get the total rate of change of entropy
dSry /dt at the horizon as

dSpy _dSy , dS, _ 4n Ry (0+p) dRy

dt dt dt Ty dt
For validity of GSLT, we must have the condition dSyy /df>0. Assuming, a
positive temperature, we see that GSLT will be valid as long as (p+ p)z 0 and
dRy/dt>0 (or (p+p)<0 and dR,/dt<0). In what follows, we shall discuss
the validity of GSLT for the homogeneous and anisotropic Bianchi type-I
Universe bounded by apparent and event horizon respectively in the following

(35)
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subsections:

5.1. Apparent horizon. For the homogeneous and anisotropic Bianchi
type-1 Universe, the radius of the apparent horizon is inverse of the Hubble
parameter and given by

1
Ri=4 (56)
and the rate of change of the apparent horizon is given by
d&=—d—HL=l+q- (57)
dt dt H?
The Hawking temperature associated with the apparent horizon is [103]
1 H
T =0, " om (58)

Now, the rate of change of horizon entropy dS,/d:t and matter entropy
ds, /dt are given by Egs. (52) and (54) as,

ds, 4n®
Rt ®
as, 4n’ dR
. =?(p+p)(7;‘—HRAJ. (60)
2.0x108
1.5x108
5
N 1.0x108 -
v -
©
5.0x107 - ]

Fig.2. The rate of change of the total entropy at the apparent horizon dsS,,/dt is plotted against
time (7) with k,=02, k,=0.3 and A=-0.1.
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Therefore, the rate of change of total entropy at the apparent horizon from
Eq. (55) is given by

dS;, :ﬁ( . )dRA

a P g 1)
Now using Egs. (28), (29) and (57), the above Eq. (61) becomes
dSy, 8m* \H*(1+¢) -o*(1+
T4 _ { ( CI) ( Q)} (62)

dt H3(1+22)

Eq. (62) represents the rate of change of total entropy on the apparent horizon.
The validity of the GSLT on the apparent horizon requires that dS;, /dt>0. Due
to the complexity of the expression, we examine the validity of GSLT through
a graphical approach. Fig.2 illustrates the plot of the rate of change of total entropy
dS;,/dt against cosmic time z It is evident from the graph that GSLT is
consistently satisfied on the apparent horizon.

5.2. Event horizon. The radius of event horizon R, is given by

< dt
R = a(t ) " 63
) ©
From Eq. (63) we get,
dR
_tE =HR;—1. (64)
In this case, the thermodynamical system bounded by the event horizon may not
be a Bekenstein system [80], so we consider modified Hawking temperature instead
of Hawking temperature. The modified Hawking temperature on the event horizon
is defined as [83]
H’R
T, = E (65)
2n
Now, the rate of change of horizon entropy SE and matter entropy Sm are
respectively given by the Egs. (52) and (54) as,

ds, 8mn’R;
—LE-———L(p+p), 66
T bep) (66)
ds, 8n’Ry dR;
m _ + —HR, |.
P (o p)( . E] (67)

Therefore, the rate of change of total entropy at the event horizon from Eq.

(55) is given by
dS;; 8n’R: 11
—E =———2(p+p) ————|.
dt 178 (P P) R, R, (68)
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4x10° -

3x10 -

ds,. /dt

2x10 |

110" |

Fig.3. The rate of change of the total entropy at the event horizon dS,,./dt is plotted against
time ¢ with k,=0.2, k,=0.3 and A =-0.1.

From the above Eq. (68) we see that GSLT is satisfied as long as (p+ p)ZO
under the realistic assumption that the radius of event horizon is greater than the
radius of apparent horizon [83]. Using Egs. (28), (29) and (64), the above Eq.
(68) becomes

Ry Ry

dSTE_16n2R§{H2(l+q)—02} 11
dt H2(1+2)) ' (69)

In order to ensure the validity of GSLT at the event horizon, it is necessary
to have dS;;/dt>0. However, the expression of GSLT at the event horizon is
quite complex. Therefore, we discuss it graphically. We have created a graphical
representation that illustrates the plot of the rate of change of total entropy
dSy /dt versus cosmic time ¢, as depicted in Fig.3. Upon observing the figure,
it becomes evident that GSLT is consistently satisfied.

6. Statefinder diagnostic. Sahni et al. [104] introduced a statefinder
diagnostic approach, which utilizes the third derivative of the average scale factor
w.T. to cosmic time ¢, to define a geometrical statefinder pair {r, s}. This diagnostic
tool serves as a useful test for distinguishing between different dark energy models.
Moreover, the statefinder diagnostic pair also characterizes the ACDM model,
where the cosmological constant A plays the role of dark energy.

The ACDM model is considered the fundamental model in the study of the
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Fig.4. (a) p, p. (b) r.

evolution of the accelerating Universe, and it is characterized by the fixed point
{r, st=A{1, 0}.
The state finder diagnostic pair is mathematically defined as follows:

3H  H

r=1+?+?, (70)
=1
3(g-12) 7h

Now, we apply the statefinder diagnostic approach to our model for testing
its behavior in accordance with ACDM model (Fig.4). For our model, the
expression of parameters {r, s} are obtained as follows

r=1-sech’t , (72)

s 2sech’t
= o\ 73
3(1 + 2tanh2‘t) (73)

7. Physical acceptability of the solutions. For the stability of corre-
sponding solutions, we should check that our model is physically acceptable.

- Sound speed: It is required that the velocity of sound v, should be less
than the velocity of light c¢. The positive value of v, implies that the model is
stable whereas the negative value implies that the model is unstable.

The sound speed v, for our model is obtained as

_dp 1)

v, = ,
dp  m(r)
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l(t) = (3}“—+1J 6k; (Mj —4k; |cothtesch®t +
161" +10A +1 3h+1

Mcsch%(cschzt + 3coth21:) 8}\4+
k

1 1

where

csch%cotht}

m(t): ! {—6k§’cothrcschzr—&cothrcsch(’r—
! 1607 +100 +1 3x 1

1522 + 50 2x+1
1+31 k

4k3; )cothr csch’t + %z_kz)csch% (CSChz’I: + 3cothzr)+ %—Jrzcsch%cotht
ki LYW AN

Fig.5b depicts the plot of sound speed with cosmic time. We observe that
v, >1 throughout the evolution of the Universe.

+ Energy conditions (EC): The weak energy conditions (WEC) and dominant
energy conditions (DEC) are given by (i) p>0, (ii) p—p >0 and (iii) p+ p>0.
The strong energy conditions (SEC) are given by p+3p>0 [105-108]. Various

a b
0.03 181
? 1.6
o 0.02 1o
001" {14
0.00 - ‘ - ‘ , 127
0 0 20 30 40 50 0 5 10 15 20
t t
10
p-p
0 Fig.5. (@) s. (b) v,. (¢) p-p,
p+p p+p, p+3p.
E pt+3p
10
(o4
-20
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authors [109-112] have studied energy conditions in different theories of gravities.
The lefthand side of energy conditions have been graphed in Fig.4a and Fig.5c.
From these figures, we observe that WEC and DEC for the derived model are
satisfied whereas SEC is violated.

8. Graphical discussions. In all the graphs, ¢ denotes cosmic evolution
time, generally measured in Giga years (1 Gyr=10°) years along the x axis. Along
the y axis, all physical quantities like anisotropy parameter Ap, EOS parameter
o, energy conditions etc. are measured in geometrized units, where the speed
of light ¢=1 and the gravitational constant G=1. The numerical values used in
the graphs are A=-0.1, k,=0.5, k,=0.2 and k,=0.3.

9. Conclusions. In this study, we have investigated the properties of a
spatially homogeneous and anisotropic LRS Bianchi type-I model within the frame-
work of f (R, T) gravity. Specifically, we consider the choice f(R, T)= R+21(T),
where f(T)=-AT and A is an arbitrary constant. To fully solve the field equations,
we adopt the condition 'c'z'/ aH? +Bg =0, where the jerk parameter j is directly
proportional to the negative of the deceleration parameter g. As the cosmic time
evolves, both the Hubble parameter H and the anisotropy parameter Ap decreases
and eventually approaches to zero at the later stage of the Universe. This implies
that the Universe exhibits anisotropy in its early stage and tends towards isotropy
at later times. The deceleration parameter ¢ — —1, indicates that the model is
experiencing cosmic acceleration. At the early stage of the Universe, the EOS
parameter o < -1, suggests a behavior similar to phantom dark energy. However,
as the Universe evolves, it approaches the phantom-divide line w=-1. Verma et
al. [113] have arrived at a conclusion that EOS greater than -1 which is in line
with the recent findings from DESI colloboration. The satefinder parameters
r—1, s— 0, respectively, as cosmic time progresses, indicating that our model
corresponds to the ACDM model at the later epoch. Further, we check the
validity of this model by examining the GSLT on both the apparent and event
horizons. For this, we consider the Hawking temperature for the apparent horizon
and the modified Hawking temperature for the event horizon. It is crucial for a
viable model to satisfy both observational constraints and thermodynamic prin-
ciples. Our investigation reveals that the GSLT is consistently fulfilled on both
horizons. Therefore, based on thermodynamic considerations, it can be concluded
that the given cosmological model is viable.

Throughout the evolution of the Universe, the sound speed v, remains
positive, indicating the stability of our model. For our model, WEC is satisfied
whereas DEC and SEC are violated. Thus, the derived solutions represent
accelerating Universe models that are consistent with the current observations of
SNe Ia and CMB.
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KOCMOJIOI'MYECKAA MOZIEJIb CO BTOPbBIM
3AKOHOM TEPMOIMHAMWKUN B I'PABUTALMNUN f{(R, T)

P.K.TUBAPU!, 1.5XAPAJIN?, B.YETPU3, A.BULLIAM*

B pamkax mMoauduuuMpoBaHHON TEOpUU TpaBUTALUU [ (R, T) HCcaea0BaHa
KOCMOJIOTMYECKAsT MOZIE/b C OMHOPOMHBIMU Y aHU30TPOITHLIMU CBOMCTBAMU, B YaCTHOCTH,
JIoKaJibHO BpaitatenbHo-cummerpuyHast (LRS) monens besinku tuma 1. ITpeacrarneHsl
peleHusT ypaBHeHUs MoJisl DifHIITeliHA B TpaBUTALIN [ (R, T )= =R+2f(T), tne
R cxanap Puyum, a T - cinen TeH3opa SHeEpruM umimyjibca T, i B stoMm ciyuae
npuHsato f(T)=-AT, roe A Tpou3BOJbHAsA KOHcTaHTa. Hamo oTmMeTuTth, 4TO
nmapaMeTp KOCMHUYECKOIOo TOJYKa j IMPSIMO IPOMOPIMOHAIIEH OTPULIATEIbHOMY
3HAUYECHUIO MapaMeTpa 3aMeIJIEHUs ¢, & UMEHHO j o« —g . AHAIU3UPOBAHBI (PU3K-
YeCKHE U T€OMETPUYECKME CBOMCTBA MOJEJIEI, MCIIOJIb30BaHbl IUATHOCTUYECKUE
JIrarpaMMbl, YTOOBI TIOJTYYUTh IIPEACTARICHUE O TEOMETPUUECKOM TTPHUPOIE MOMIECIIH.
PaccmorpeH Bolmpoc MpUMEHMMOCTH 00O0OIIIEHHOIO BTOPOrO 3aKOHA TePMOAMHAMUKNA
(GSLT) Ha BUAMMOM TOPU3OHTE U TOPU3OHTE cOObITHIA. [loMydyeHHbIE pe3yabTaThbl
nokasbiBatoT, YTo GSLT BhIMOIHSIETCS HAa 000OMX TOPU3OHTAX.

KoitoueBsie croBa: f (R, T ):mun bBoauku-1: napamemp poiexa: 0600ueH b 6MOPOLL
3aKOH MepMOOUHAMUKU: NApaMemp 3amMe0NeHUs: napamemp
onpedeneHuss COCMOAHUSA
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